Open Access
Issue |
J Extra Corpor Technol
Volume 56, Number 4, December 2024
|
|
---|---|---|
Page(s) | 167 - 173 | |
DOI | https://doi.org/10.1051/ject/2024014 | |
Published online | 20 December 2024 |
- Hayes LW, Oster RA, Tofil NM, Tolwani AJ. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care. 2009;24(3):394–400. https://doi.org/10.1016/j.jcrc.2008.12.017. [CrossRef] [PubMed] [Google Scholar]
- Tandukar S, Palevsky PM. Continuous renal replacement therapy: who, when, why, and how. Chest. 2019;155(3):626–638. https://doi.org/10.1016/j.chest.2018.09.004. [CrossRef] [PubMed] [Google Scholar]
- Hoffman TM, Wernovsky G, Atz AM, et al. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation. 2003;107(7):996–1002. https://doi.org/10.1161/01.CIR.0000051365.81920.28. [CrossRef] [PubMed] [Google Scholar]
- Vogt W, Läer S. Prevention for pediatric low cardiac output syndrome: results from the European survey EuLoCOS-Paed. Pediatr Anesth. 2011;21(12):1176–1184. https://doi.org/10.1111/j.1460-9592.2011.03683.x. [CrossRef] [PubMed] [Google Scholar]
- Hornik CP, Yogev R, Mourani PM, et al. Population pharmacokinetics of milrinone in infants, children, and adolescents. J Clin Pharmacol. 2019;59(12):1606–1619. https://doi.org/10.1002/jcph.1499. [CrossRef] [PubMed] [Google Scholar]
- Fredholm M, Jörgensen K, Houltz E, Ricksten SE. Inotropic and lusitropic effects of levosimendan and milrinone assessed by strain echocardiography – a randomised trial. Acta Anaesthesiol Scand. 2018;62(9):1246–1254. https://doi.org/10.1111/aas.13170. [CrossRef] [PubMed] [Google Scholar]
- Yano M, Kohno M, Ohkusa T, et al. Effect of milrinone on left ventricular relaxation and Ca2+ uptake function of cardiac sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol. 2000;279(4):H1898–H1905. https://doi.org/10.1152/ajpheart.2000.279.4.H1898. [CrossRef] [PubMed] [Google Scholar]
- Honerjäger P, Nawrath H. Pharmacology of bipyridine phosphodiesterase III inhibitors. Eur J Anaesthesiol Suppl. 1992;5:7–14. [PubMed] [Google Scholar]
- Kim M, Seong SW, Song PS, et al. Inodilators may improve the in-hospital mortality of patients with cardiogenic shock undergoing veno-arterial extracorporeal membrane oxygenation. J Clin Med. 2022;11(17):4958. https://doi.org/10.3390/jcm11174958. [CrossRef] [PubMed] [Google Scholar]
- Rodenas-Alesina E, Luis Scolari F, Wang VN, et al. Improved mortality and haemodynamics with milrinone in cardiogenic shock due to acute decompensated heart failure. ESC Heart Fail. 2023;10(4):2577–2587. https://doi.org/10.1002/ehf2.14379. [CrossRef] [PubMed] [Google Scholar]
- Ricci Z, Goldstein SL. Pediatric continuous renal replacement therapy. Contrib Nephrol. 2016;187:121–130. https://doi.org/10.1159/000442370. [CrossRef] [PubMed] [Google Scholar]
- Watson RS, Crow SS, Hartman ME, Lacroix J, Odetola FO. Epidemiology and outcomes of pediatric multiple organ dysfunction syndrome. Pediatr Crit Care Med. 2017;18(3_suppl Suppl 1):4–16. https://doi.org/10.1097/PCC.0000000000001047. [Google Scholar]
- Nasr VG, Raman L, Barbaro RP, et al. Highlights from the Extracorporeal Life Support Organization Registry: 2006–2017. ASAIO J. 2019;65(6):537–544. https://doi.org/10.1097/MAT.0000000000000863. [CrossRef] [PubMed] [Google Scholar]
- Raffaeli G, Pokorna P, Allegaert K, et al. Drug disposition and pharmacotherapy in neonatal ECMO: from fragmented data to integrated knowledge. Front Pediatr. 2019;7:360. https://doi.org/10.3389/fped.2019.00360. [CrossRef] [PubMed] [Google Scholar]
- Nolin TD, Aronoff GR, Fissell WH, et al. Pharmacokinetic assessment in patients receiving continuous RRT: perspectives from the kidney health initiative. Clin J Am Soc Nephrol. 2015;10(1):159–164. https://doi.org/10.2215/CJN.05630614. [CrossRef] [PubMed] [Google Scholar]
- Hunt JP, McKnite AM, Green DJ, Whelan AJ, Imburgia CE, Watt KM. Interaction of ceftazidime and clindamycin with extracorporeal life support. J Infect Chemother. 2023;29(12):1119–1125. https://doi.org/10.1016/j.jiac.2023.08.007. [CrossRef] [PubMed] [Google Scholar]
- Burkhardt BE, Rücker G, Stiller B. Prophylactic milrinone for the prevention of low cardiac output syndrome and mortality in children undergoing surgery for congenital heart disease. Cochrane Database Syst Rev. 2015;3:CD00951. https://doi.org/10.1002/14651858.CD009515.pub2. [Google Scholar]
- Bishara T, Seto WTW, Trope A, Parshuram CS. Use of milrinone in critically ill children. Can J Hosp Pharm. 2010;63(6):420–428. https://doi.org/10.4212/cjhp.v63i6.960. [PubMed] [Google Scholar]
- DrugBank Version 45.1.1. Drug and drug target database. http://www.drugbank.ca. Accessed 26 Aug 2023. [Google Scholar]
- Cone J, Wang S, Tandon N, et al. Comparison of the effects of cilostazol and milrinone on intracellular cAMP levels and cellular function in platelets and cardiac cells. J Cardiovasc Pharmacol. 1999;34(4):497–504. https://doi.org/10.1097/00005344-199910000-00004. [CrossRef] [PubMed] [Google Scholar]
- Kuthe A, Magert H, Uckert S, Forssmann WG, Stief CG, Jonas U. Gene expression of the phosphodiesterases 3A and 5A in human corpus cavernosum penis. Eur Urol. 2000;38(1):108–114. https://doi.org/10.1159/000020262. [CrossRef] [PubMed] [Google Scholar]
- Baruch L, Patacsil P, Hameed A, Pina I, Loh E. Pharmacodynamic effects of milrinone with and without a bolus loading infusion. Am Heart J. 2001;141(2):14A–21A. https://doi.org/10.1067/mhj.2001.111404. [CrossRef] [Google Scholar]
- Bailey JM, Levy JH, Kikura M, Szlam F, Hug CC. Pharmacokinetics of intravenous milrinone in patients undergoing cardiac surgery. Anesthesiology. 1994;81(3):616–622. https://doi.org/10.1097/00000542-199409000-00014. [CrossRef] [PubMed] [Google Scholar]
- Cox ZL, Calcutt MW, Morrison TB, Akers WS, Davis MB, Lenihan DJ. Elevation of plasma milrinone concentrations in stage D heart failure associated with renal dysfunction. J Cardiovasc Pharmacol Ther. 2013;18(5):433–438. https://doi.org/10.1177/1074248413489773. [CrossRef] [PubMed] [Google Scholar]
- Lemaitre F, Hasni N, Leprince P, et al. Propofol, midazolam, vancomycin and cyclosporine therapeutic drug monitoring in extracorporeal membrane oxygenation circuits primed with whole human blood. Crit Care. 2015;19:40. https://doi.org/10.1186/s13054-015-0772-5. [CrossRef] [PubMed] [Google Scholar]
- Shekar K, Roberts JA, Mcdonald CI, et al. Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: results from an ex vivo study. Crit Care. 2015;19(1):164. https://doi.org/10.1186/s13054-015-0891-z. [CrossRef] [PubMed] [Google Scholar]
- Mehta NM, Halwick DR, Dodson BL, Thompson JE, Arnold JH. Potential drug sequestration during extracorporeal membrane oxygenation: results from an ex vivo experiment. Intensive Care Med. 2007;33(6):1018–1024. https://doi.org/10.1007/s00134-007-0606-2. [CrossRef] [PubMed] [Google Scholar]
- Dallefeld SH, Sherwin J, Zimmerman KO, Watt KM. Dexmedetomidine extraction by the extracorporeal membrane oxygenation circuit: results from an in vitro study. Perfusion. 2020;35(3):209–216. https://doi.org/10.1177/0267659119868062. [CrossRef] [PubMed] [Google Scholar]
- Preston TJ, Ratliff TM, Gomez D, et al. Modified surface coatings and their effect on drug adsorption within the extracorporeal life support circuit. J Extra Corpor Technol. 2010;42(3):199–202. [PubMed] [Google Scholar]
- Green DJ, Watt KM, Fish DN, McKnite A, Kelley W, Bensimhon AR. Cefepime extraction by extracorporeal life support circuits. J Extra Corpor Technol. 2022;54(3):212–222. https://doi.org/10.1182/ject-212-222. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Imburgia CE, Rower JE, Green DJ, et al. Remdesivir and GS-441524 extraction by ex vivo extracorporeal life support circuits. ASAIO J. 2022;68(9):1204–1210. https://doi.org/10.1097/MAT.0000000000001616. [CrossRef] [PubMed] [Google Scholar]
- Onichimowski D, Nosek K, Ziółkowski H, Jaroszewski J, Pawlos A, Czuczwar M. Adsorption of vancomycin, gentamycin, ciprofloxacin and tygecycline on the filters in continuous renal replacement therapy circuits: in full blood in vitro study. J Artif Organs. 2021;24(1):65–73. https://doi.org/10.1007/s10047-020-01214-8. [CrossRef] [PubMed] [Google Scholar]
- Onichimowski D, Ziółkowski H, Nosek K, Jaroszewski J, Rypulak E, Czuczwar M. Comparison of adsorption of selected antibiotics on the filters in continuous renal replacement therapy circuits: in vitro studies. J Artif Organs. 2020;23(2):163–170. https://doi.org/10.1007/s10047-019-01139-x. [CrossRef] [PubMed] [Google Scholar]
- Kumar A, Mann HJ, Keshtgarpour M, et al. In vitro characterization of oritavancin clearance from human blood by low-flux, high-flux, and continuous renal replacement therapy dialyzers. Int J Artif Organs. 2011;34(11):1067–1074. https://doi.org/10.5301/ijao.5000008. [CrossRef] [PubMed] [Google Scholar]
- Baud FJ, Houzé P, Raphalen JH, et al. Diafiltration flowrate is a determinant of the extent of adsorption of amikacin in renal replacement therapy using the ST150®-AN69 filter: An in vitro study. Int J Artif Organs. 2020;43(12):758–766. https://doi.org/10.1177/0391398820911928. [CrossRef] [PubMed] [Google Scholar]
- Choi G, Gomersall CD, Lipman J, et al. The effect of adsorption, filter material and point of dilution on antibiotic elimination by haemofiltration an in vitro study of levofloxacin. Int J Antimicrob Agents. 2004;24(5):468–472. https://doi.org/10.1016/j.ijantimicag.2004.06.005. [PubMed] [Google Scholar]
- Wildschut ED, Ahsman MJ, Allegaert K, Mathot RAA, Tibboel D. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010;36(12):2109–2116. https://doi.org/10.1007/s00134-010-2041-z. [CrossRef] [PubMed] [Google Scholar]
- Gist KM, Mizuno T, Goldstein SL, Vinks A. Retrospective evaluation of milrinone pharmacokinetics in children with kidney injury. Ther Drug Monit. 2015;37(6):792–796. https://doi.org/10.1097/FTD.0000000000000214. [CrossRef] [PubMed] [Google Scholar]
- O’Hanlon CJ, Sumpter A, Anderson BJ, Hannam JA. Time-varying clearance in milrinone pharmacokinetics from premature neonates to adolescents. Clin Pharmacokinet. 2024;63:695–706. https://doi.org/10.1007/s40262-024-01372-5. [CrossRef] [PubMed] [Google Scholar]
- Taniguchi T, Shibata K, Saito S, Matsumoto H, Okeie K. Pharmacokinetics of milrinone in patients with congestive heart failure during continuous venovenous hemofiltration. Intensive Care Med. 2000;26(8):1089–1093. https://doi.org/10.1007/s001340051322. [CrossRef] [PubMed] [Google Scholar]
- Watt KM, Cohen-Wolkowiez M, Barrett JS, et al. Physiologically based pharmacokinetic approach to determine dosing on extracorporeal life support: fluconazole in children on ECMO. CPT Pharmacometrics Syst Pharmacol. 2018;7(10):629–637. https://doi.org/10.1002/psp4.12338. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.