Open Access
Review
Issue
J Extra Corpor Technol
Volume 56, Number 4, December 2024
Page(s) 191 - 202
DOI https://doi.org/10.1051/ject/2024023
Published online 20 December 2024
  1. Broman LM, Taccone FS, Lorusso R, et al. The ELSO Maastricht Treaty for ECLS Nomenclature: abbreviations for cannulation configuration in extracorporeal life support – a position paper of the Extracorporeal Life Support Organization. Crit Care. 2019;23:36. [CrossRef] [PubMed] [Google Scholar]
  2. Zochios V, Parhar K, Tunnicliffe W, et al. The right ventricle in ARDS. Chest. 2017;152:181–193. [CrossRef] [PubMed] [Google Scholar]
  3. Aggarwal V, Einhorn BN, Cohen HA. Current status of percutaneous right ventricular assist devices: first-in-man use of a novel dual lumen cannula. Catheter Cardiovasc Interv. 2016;88:390–396. [CrossRef] [PubMed] [Google Scholar]
  4. Gulack BC, Hirji SA, Hartwig MG. Bridge to LTx and rescue post-transplant: the expanding role of extracorporeal membrane oxygenation. J Thorac Dis. 2014;6.8. [Google Scholar]
  5. Mehta T, Sallehuddin A, John J. The journey of pediatric ECMO. Qatar Med J. 2017;2017(14):1. [PubMed] [Google Scholar]
  6. Panchabhai TS, Chaddha U, McCurry KRet al. Historical perspectives of lung transplantation: connecting the dots. J Thorac Dis. 2018;10(7):4516–4531. [CrossRef] [PubMed] [Google Scholar]
  7. Dabak G, Şenbaklavacı Ö. History of lung transplantation. Turk Thorac J. 2016;17(2):71–75. [CrossRef] [PubMed] [Google Scholar]
  8. Faccioli E, Terzi S, Pangoni A, et al. Extracorporeal membrane oxygenation in lung transplantation: Indications, techniques and results. World J Transplant. 2021;11(7):290–302. [CrossRef] [PubMed] [Google Scholar]
  9. Van Raemdonck D, Van Slambrouck J, Ceulemans LJ. Donor lung preservation for transplantation – where do we go from here? J Thorac Disc. 2022;14(9):3125–3130. [CrossRef] [Google Scholar]
  10. Ali A, Nykanen AI, Beroncal E, et al. Successful 3-day lung preservation using a cyclic normothermic ex vivo lung perfusion strategy. eBioMedicine. 2022;83:104210. [CrossRef] [PubMed] [Google Scholar]
  11. Ali A, Hoetzenecker Konrad, Luis J, et al. Extension of cold static donor lung preservation at 10 °C. NEJM Evid. 2023;2(6):EVIDoa2300008. [Google Scholar]
  12. Jing L, Konoeda H, Keshavjee S, et al. Using nutrient-rich solutions and adding multiple cytoprotective agents as new strategies to develop lung preservation solutions. Am J Physiol Lung Cell Mol Physiol. 2021;320(6):L979–L989. [CrossRef] [PubMed] [Google Scholar]
  13. Hunt M, Bermudez F, Crespo M, et al. ECMO as a bridge to lung transplantation for COVID-19 respiratory failure: outcomes and risk factors for early mortality. J Heart Lung Transplant. 2023;1(42):S90. [CrossRef] [Google Scholar]
  14. Sainathan S, Ryan J, Sharma M, et al. Outcome of bridge to lung transplantation with extracorporeal membrane oxygenation in pediatric patients 12 years and older. Ann Thorac Surg. 2021;112(4):1083–1088. [CrossRef] [PubMed] [Google Scholar]
  15. Ko RE, Lee JY, Kim SC, et al. Extracorporeal membrane oxygenation as a bridge to lung transplantation: analysis of Korean Organ Transplantation Registry (KOTRY) data. Respir Res. 2020;21(1):20. [CrossRef] [PubMed] [Google Scholar]
  16. Fischer S, Simon AR, Welte T, et al. Bridge to lung transplantation with the novel pumpless interventional lung assist device NovaLung. J Thorac Cardiovasc Surg. 2006;131(3):719–723. [CrossRef] [PubMed] [Google Scholar]
  17. Oh DK, Hong SB, Shim TS, et al. Effects of the duration of bridge to lung transplantation with extracorporeal membrane oxygenation. PLoS One. 2021;16(7):e0253520. [CrossRef] [PubMed] [Google Scholar]
  18. Atchade E, Ren M, Jean-Baptiste Sylvain, et al. ECMO support as a bridge to lung transplantation is an independent risk factor for bronchial anastomotic dehiscence. BMC Pulm Med. 2022;22(1):482. [Google Scholar]
  19. Rando HJ, Fanning JP, Cho S, et al. Extracorporeal membrane oxygenation as a bridge to lung transplantation: Practice patterns and patient outcomes. J Heart Lung Transplant. 2024;43(1):77–84. [CrossRef] [PubMed] [Google Scholar]
  20. Habertheuer A, Richards T, Sertic F, et al. Stratification risk analysis in bridging patients to lung transplant on ECMO: the STABLE Risk Score. Ann Thorac Surg. 2020;110(4):1175–1184. [CrossRef] [PubMed] [Google Scholar]
  21. Hoetzenecker K, Donahoe L, Yeung JC, et al. Extracorporeal life support as a bridge to lung transplantation-experience of a high-volume transplant center. J Thorac Cardiovasc Surg. 2018;155(3):1316–1328. [CrossRef] [PubMed] [Google Scholar]
  22. De Walque JM, de Terwangne C, Jungers R, et al. Potential for recovery after extremely prolonged VV-ECMO support in well-selected severe COVID-19 patients: a retrospective cohort study. BMC Pulm Med. 2024;24(1):19. [CrossRef] [PubMed] [Google Scholar]
  23. Lucas A, Yasa J, Lucas M. Regeneration and repair in the healing lung. Clin Transl Immunology. 2020;9(7):e1152. [CrossRef] [PubMed] [Google Scholar]
  24. Kotton DN, Morrisey EE. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med. 2014;20(8):822–832. [CrossRef] [PubMed] [Google Scholar]
  25. Biscotti M, Sonett J, Bacchetta M. ECMO support in lung transplant recipients. In: Abrams D, Brodie D, eds. Veno-venous ECMO: principles and practice. Cham: Springer; 2017; 367–375. [Google Scholar]
  26. Fuehner T, Kuehn C, Hadem J, et al Extracorporeal membrane oxygenation in awake patients as bridge to lung transplantation. Am J Respir Crit Care Med. 2012;185(7):763–768. [CrossRef] [PubMed] [Google Scholar]
  27. Sabato LA, Long W, Cavarocchi N, et al. Extracorporeal membrane oxygenation as a bridge to lung transplantation. In: Hosenpud JD, Christie JD, eds. The AST handbook of transplant infections. Hoboken, NJ: Wiley; 2011; 280–289. [Google Scholar]
  28. Ius F, Tudorache I, Warnecke G. Extracorporeal support, during and after lung transplantation: the history of an idea. J Thorac Dis. J Thorac Dis. 2018;10(8):5131–5148. [CrossRef] [Google Scholar]
  29. Taka H, Miyoshi K, Kurosaki T, et al. Lung transplantation via cardiopulmonary bypass: excellent survival outcomes from extended criteria donors. Gen Thorac Cardiovasc Surg. 2019;67(7):624–632. [CrossRef] [PubMed] [Google Scholar]
  30. Hoetzenecker K, Benazzo A, Stork T, et al. Bilateral lung transplantation on intraoperative extracorporeal membrane oxygenator: an observational study. J Thorac Cardiovasc Surg. 2020;160(1):320–327. [CrossRef] [PubMed] [Google Scholar]
  31. Erkılınç A, Vayvada M. The use of intraoperative extracorporeal membrane oxygenation in lung transplantation: initial institutional experience. Braz J Cardiovasc Surg. 2023;38(1):88–95. [PubMed] [Google Scholar]
  32. Ruszel N, Kiełbowski K, Piotrowska M, et al. Central, peripheral ECMO or CPB? Comparsion between circulatory support methods used during lung transplantation. J Cardiothorac Surg. 2021;16(1):341. [CrossRef] [PubMed] [Google Scholar]
  33. Cheng T, Barve R, Cheng YWM, et al. Conventional versus miniaturized cardiopulmonary bypass: a systematic review and meta-analysis. JTCVS Open. 2021;8:418–441. [CrossRef] [PubMed] [Google Scholar]
  34. Baikoussis NG, Papakonstantinou NA, Apostolakis E. The, “benefits” of the mini-extracorporeal circulation in the minimal invasive cardiac surgery era. J Cardiol. 2014;63(6):391–396. [CrossRef] [PubMed] [Google Scholar]
  35. Bical OM, Fromes Y, Gaillard D, et al. Comparison of the inflammatory response between miniaturized and standard CPB circuits in aortic valve surgery. Eur J Cardiothorac Surg. 2006;29:699–702. [CrossRef] [PubMed] [Google Scholar]
  36. Vohra HA, Whistance R, Modi A, et al. The inflammatory response to miniaturised extracorporeal circulation: a review of the literature. Mediators Inflamm. 2009;2009:707042. [Google Scholar]
  37. Ltaief Z, Ben-Hamouda N, Rancati V, et al. Vasoplegic syndrome after cardiopulmonary bypass in cardiovascular surgery: pathophysiology and management in critical care. J Clin Med. 2022;11:6407. [CrossRef] [PubMed] [Google Scholar]
  38. Mlejnsky F, Klein AA, Lindner J, et al. A randomised controlled trial of roller versus centrifugal cardiopulmonary bypass pumps in patients undergoing pulmonary endarterectomy. Perfusion. 2014;30:520–528. [Google Scholar]
  39. Boffini M, Simonato E, Ricci D, et al. Extracorporeal membrane oxygenation after lung transplantation: risk factors and outcomes analysis. Ann Cardiothorac Surg. 2019;8(1):54–61. [CrossRef] [PubMed] [Google Scholar]
  40. Hunt ML, Cantu E. Primary graft dysfunction after lung transplantation. Curr Opin Organ Transplant. 2023;28(3):180–186. [CrossRef] [PubMed] [Google Scholar]
  41. Van Slambrouck J, Van Raemdonck D, Vos R, et al. A focused review on primary graft dysfunction after clinical lung transplantation: a multilevel syndrome. Cells. 2022;11(4):745. [CrossRef] [PubMed] [Google Scholar]
  42. Harano T, Ryan JP, Morrell MR, et al. Extracorporeal membrane oxygenation for primary graft dysfunction after lung transplantation. ASAIO J. 1992;67(9):1071–1078. [Google Scholar]
  43. DeRoo SC, Takayama H, Nemeth S, et al. Extracorporeal membrane oxygenation for primary graft dysfunction after heart transplant. J Thorac Cardiovasc Surg. 2019;158(6):1576–1584. [CrossRef] [PubMed] [Google Scholar]
  44. Takahashi T, Terada Y, Pasque MK, et al. Outcomes of extracorporeal membrane oxygenation for primary graft dysfunction after lung transplantation. Ann Thorac Surg. 2023;115(5):1273–1280. [CrossRef] [PubMed] [Google Scholar]
  45. Saeed O, Stein LH, Cavarocchi N, et al. Outcomes by cannulation methods for venovenous extracorporeal membrane oxygenation during COVID-19: a multicenter retrospective study. Artific Organs. 2022;46(8):1659–1668. [CrossRef] [PubMed] [Google Scholar]
  46. Parker LP, Marcial AS, Brismar TB, et al. Cannulation configuration and recirculation in venovenous extracorporeal membrane oxygenation. Sci Rep. 2022;12(1):16379. [CrossRef] [PubMed] [Google Scholar]
  47. Kim N, Woo A, Kim SC, et al. Long- and short-term clinical impact of awake extracorporeal membrane oxygenation as bridging therapy for lung transplantation. Respir Res. 2021;22(1):306. [CrossRef] [PubMed] [Google Scholar]
  48. Weill D, Benden C, Corris PA, et al. A consensus document for the selection of lung transplant candidates: 2014 – an update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2015;34(1):1–15. [CrossRef] [PubMed] [Google Scholar]
  49. Turner DA, Cheifetz IM, Rehder KJ, et al. Active rehabilitation and physical therapy during extracorporeal membrane oxygenation while awaiting lung transplantation: a practical approach. Crit Care Med. 2011 Dec;39:2593–2598. [CrossRef] [PubMed] [Google Scholar]
  50. Abrams D, Javidfar J, Farrand E, et al. Early mobilization of patients receiving extracorporeal membrane oxygenation: a retrospective cohort study. Crit Care. 2014;27(18):R38. [CrossRef] [PubMed] [Google Scholar]
  51. Braune S, Bojes P, Mecklenburg A, et al. Feasibility, safety, and resource utilisation of active mobilisation of patients on extracorporeal life support: a prospective observational study. Ann. Intensive Care. 2020;10:161. [CrossRef] [Google Scholar]
  52. Haji JY, Mehra S, Doraiswamy P. Awake ECMO and mobilizing patients on ECMO. Indian J Thorac Cardiovasc Surg. 2021;37:309–318. [CrossRef] [PubMed] [Google Scholar]
  53. Wells CL, Forreseter J, Vogel J, et al. The feasibility and safety in providing early rehabilitation and ambulation for adults on percutaneous venous to arterial extracorporeal membrane oxygenation support. Am J Respir Crit Care Med. 2017;195:A2710. [Google Scholar]
  54. Keshavamurthy S, Bazan V, Tribble TA, et al. Ambulatory extracorporeal membrane oxygenation (ECMO) as a bridge to lung transplantation. Indian J Thorac Cardiovasc Surg. 2021;37(Suppl 3):366–379. [CrossRef] [PubMed] [Google Scholar]
  55. Blum JM, Woodcock BJ, Dubovoy AV, et al. Perioperative management of bridge-to-lung transplant using ECMO. ASAIO J. 2013;59(3):331–335. [CrossRef] [PubMed] [Google Scholar]
  56. Rehder KJ, Turner DA, Hartwig MG, et al. Active rehabilitation during extracorporeal membrane oxygenation as a bridge to lung transplantation. Respir Care. 2013;58(8):1291–1298. [CrossRef] [PubMed] [Google Scholar]
  57. Mohite PN, Sabashnikov A, Reed A, et al. Extracorporeal life support in “awake” patients as a bridge to lung transplant. Thorac Cardiovasc Surg. 2015;63(8):699–705. [CrossRef] [PubMed] [Google Scholar]
  58. Wells CL, Forrester J, Vogel J, et al. Safety and feasibility of early physical therapy for patients on extracorporeal membrane oxygenator: University of Maryland Medical Center Experience. Critical Care Medicine. 2017;46(1):53–59. [Google Scholar]
  59. Hayes K, Holland AE, Pellegrino VA, et al. Early rehabilitation during extracorporeal membrane oxygenation has minimal impact on physiological parameters: a pilot randomised controlled trial. Aust Crit Care. 2021;34(3):217–225. [CrossRef] [PubMed] [Google Scholar]
  60. Abrams D, Madahar P, Eckhardt CM, et al. MORE-PT Investigators. Early mobilization during extracorporeal membrane oxygenation for cardiopulmonary failure in adults: factors associated with intensity of treatment. Ann Am Thorac Soc. 2022;19(1):90–98. [CrossRef] [PubMed] [Google Scholar]
  61. Hakim AH, Ahmad U, McCurry KR, et al. Contemporary outcomes of extracorporeal membrane oxygenation used as bridge to lung transplantation. Ann Thorac Surg. 2018;106:192–198. [CrossRef] [PubMed] [Google Scholar]
  62. Mayer KP, Pastva AM, Du G, et al. Mobility levels with physical rehabilitation delivered during and after extracorporeal membrane oxygenation: a marker of illness severity or an indication of recovery? Phys Ther. 2022;102(3):pzab301. [CrossRef] [PubMed] [Google Scholar]
  63. Cerier E, Manerikar A, Kandula V, et al. Early initiation of physical and occupational therapy while on extracorporeal life support improves patients’ functional activity. Artif Organs. 2023;47:870–881. [CrossRef] [PubMed] [Google Scholar]
  64. Tonna JE, Bailey M, Abrams D, et al. Predictors of early mobilization in patients requiring VV ECMO for greater than 7 days: an international cohort study. Heart Lung. 2023;62:57–63. [CrossRef] [PubMed] [Google Scholar]
  65. Bain JC, Turner DA, Rehder KJ, et al. Economic outcomes of extracorporeal membrane oxygenation with and without ambulation as a bridge to lung transplantation. Respir Care. 2016;61:1–7. [CrossRef] [PubMed] [Google Scholar]
  66. Hayes K, Hodgson CL, Webb MJ, Rehabilitation of adult patients on extracorporeal membrane oxygenation: a scoping review. Aust Crit Care. 2022;35:575–582. [CrossRef] [PubMed] [Google Scholar]
  67. Kourek C, Nanas S, Kotanidou A, et al. Modalities of exercise training in patients with extracorporeal membrane oxygenation support. J Cardiovasc Dev Dis. 2022;9:34. [PubMed] [Google Scholar]
  68. Xiong J, Zhang L, Bao L. Complications and mortality of venovenous extracorporeal membrane oxygenation in the treatment of neonatal respiratory failure: a systematic review and meta-analysis. BMC Pulm Med. 2020;20:124. [CrossRef] [PubMed] [Google Scholar]
  69. Bemtgen X, Zotzmann V, Benk C, et al. Thrombotic circuit complications during venovenous extracorporeal membrane oxygenation in COVID-19. J Thromb Thrombolysis. 2021;51(2):301–307. [CrossRef] [PubMed] [Google Scholar]
  70. Broman M. Complications of ECMO during transport. psnetahrqgov [Internet], 2023. Available at: https://psnet.ahrq.gov/web-mm/complications-ecmo-during-transport. [Google Scholar]
  71. Lo Coco V, Lorusso R, Raffa GM, et al. Clinical complications during veno-arterial extracorporeal membrane oxigenation in post-cardiotomy and non-post-cardiotomy shock: still the Achille’s heel. J Thorac Dis. 2018;10(12):6993–7004. [CrossRef] [PubMed] [Google Scholar]
  72. Hadano H, Kamio T, Fukaguchi K, et al Analysis of adverse events related to extracorporeal membrane oxygenation from a nationwide database of patient-safety accidents in Japan. J Artif Organs. 2024;27(1):15–22. [CrossRef] [PubMed] [Google Scholar]
  73. Fessler J, Finet M, Fischler M, et al. New aspects of lung transplantation: a narrative overview covering important aspects of perioperative management. Life. 2022;13(1):92. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.