Open Access
Issue
J Extra Corpor Technol
Volume 57, Number 3, September 2025
Page(s) 123 - 128
DOI https://doi.org/10.1051/ject/2025014
Published online 15 September 2025
  1. Dartevelle P, Fadel E, Mussot S, et al. Chronic thromboembolic pulmonary hypertension. Eur Resp J. 2004;23:637–648. [Google Scholar]
  2. AmSECT. Deep Hypothermic Circulatory Arrest (DHCA). Available at: https://stage.amsect.org/Portals/0/DHCA.pdf?ver=0RNwRbGXwUcHcqzyX5pRYQ%3d%3d. Accessed 23 April 2025. [Google Scholar]
  3. Tanaka J, Shiki K, Asou T, et al. Cerebral autoregulation during deep hypothermic nonpulsatile cardiopulmonary bypass with selective cerebral perfusion in dogs. J Thorac Cardiovasc Surg. 1988;95:124–32. [Google Scholar]
  4. Murkin J, Farrar J, Tweed W, McKenzie F, Guiraudon G. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass. Anesth Analg. 1987;66:825–832. [Google Scholar]
  5. Gaasch M, Putzer G, Schiefecker AJ, et al. Cerebral autoregulation is impaired during deep hypothermia – a porcine multimodal neuromonitoring study. Ther Hypothermia and Temp Manag. 2020;10:122–127. [Google Scholar]
  6. Hindman B, Funatsu N, Harrington J, et al. Cerebral blood flow response to PaCO2 during hypothermic cardiopulmonary bypass in rabbits. Anesthesiology. 1991;75:662–668. [Google Scholar]
  7. Kern F, Ungerleider R, Quill T, et al. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children. J Thorac Cardiovasc Surg. 1991;101:618–622. [Google Scholar]
  8. Rebeyka I, Coles J, Wilson G, et al. The effect of low-flow cardiopulmonary bypass on cerebral function: an experimental and clinical study. Ann Thorac Surg. 1987;43:391–396. [Google Scholar]
  9. Engelman R, Baker R, Likosky D, et al. The society of thoracic surgeons, the society of cardiovascular anesthesiologists, and the American Society of ExtraCorporeal Technology: Clinical practice guidelines for cardiopulmonary bypass – temperature management during cardiopulmonary bypass. Ann Thorac Surg. 2015;100:748–757. [CrossRef] [PubMed] [Google Scholar]
  10. Cao Z, Zhao M, Sun H, Hu L, Chen Y, Fan Z. Roles of mitochondria in neutrophils. Front Immunol. 2022;13:1–13. [Google Scholar]
  11. Bembea M, Lee R, Masten D, et al. Magnitude of arterial carbon dioxide change at initiation of extracorporeal membrane oxygenation support is associated with survival. J Extra Corpor Technol. 2013;45:26–32. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Henriksen L. Brain luxury perfusion during cardiopulmonary bypass in humans. A study of the cerebral blood flow response to changes in CO2, O2, and blood pressure. J Cereb Blood Flow Metab. 1986;6:366–378. [Google Scholar]
  13. Prough D, Rogers A, Stump D, et al. Cerebral blood flow decreases with time whereas cerebral oxygen consumption remains stable during hypothermic cardiopulmonary bypass in humans. Anesth Analg. 1991;72:161–168. [Google Scholar]
  14. Duebener L, Hagino I, Sakamoto T, et al. Effects of pH management during deep hypothermic bypass on cerebral microcirculation: alpha-Stat versus pH-Stat. Circulation. 2002;24:103–108. [Google Scholar]
  15. Diop S, Fadel E, Valentini P, et al. Effect of deep hypothermia (18 °C) on dioxygen metabolism during thromboendarterectomy surgery. J Cardiothorac Vasc Anesth. 2024;38:2990–2996. [Google Scholar]
  16. Kittle C, Aoki H, Brown EJr.. The role of pH and CO2 in the distribution of blood flow. Surgery. 1965;57:139–154. [Google Scholar]
  17. Emanuel D, Fleishman M, Haddy F, Scott J. Effect of pH change upon renal vascular resistance and urine flow. Circ Res. 1957;5:607–611. [Google Scholar]
  18. Wilcox C. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71:726–735. [Google Scholar]
  19. Connolly J, Kountz S, Guernsey J, Stemmer E. Acidosis as a cause of renal shutdown during extracorporeal circulation: its correction by the use of tham. J Thorac Cardiovasc Surg. 1963;46:680–688. [Google Scholar]
  20. Chen J, Edwards A, Layton A. Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla. Am J Physiol Renal Physiol. 2010;298:1369–1383. [Google Scholar]
  21. Mercier O, Dubost C, Delaporte A, et al. Pulmonary thromboendarterectomy: the Marie Lannelongue Hospital experience. Ann Cardiothorac Sur. 2022;11:143–150. [Google Scholar]
  22. Stewart P. How to understand acid-base. Elsevier Publishing Company;1981;176–177. [Google Scholar]
  23. Siesjö B. The regulation of cerebrospinal fluid pH. Kidney Int. 1972;1:360–374. [Google Scholar]
  24. Lambertsen C, Semple G, Smyth M, Gelfand R. H+ and pCO2 as chemical factors in respiratory and cerebral circulatory control. J Appl Physiol. 1961;16:473–484. [Google Scholar]
  25. Dexter F, Kern F, Hindman B, Greeley W. The brain uses mostly dissolved oxygen during profoundly hypothermic cardiopulmonary bypass. Ann Thorac Surg. 1997;63:1725–1729. [Google Scholar]
  26. Dexter F, Hindman B. Theoretical analysis of cerebral venous blood hemoglobin oxygen saturation as an index of cerebral oxygenation during hypothermic cardiopulmonary bypass. Anesthesiology. 1995;83:405–412. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.