Open Access
Issue
J Extra Corpor Technol
Volume 45, Number 2, June 2013
Page(s) 128 - 132
DOI https://doi.org/10.1051/ject/201345128
Published online 15 June 2013
  1. ‘Internal’ Workings of the Cardiopulmonary Bypass Machine Midlothian, VA 23114; 2011 [cited 2011]. Available at: www.cheresources.com/cardiopul.shtml. Accessed January 10, 2013. [Google Scholar]
  2. DeWall R, Warden H, Lillihei CW. The Helix Reservoir Bubble Oxygenator and its clinical application. In: Allen JG, ed. Extracorporeal Circulation. Springfield, IL: Charles C. Thomas; 1958:46–48. [Google Scholar]
  3. Ogella DA. Advances in perfusion technology—An overview. J Indian Med Assoc. 1999;97:436–437, 541. [Google Scholar]
  4. Banbury MK, White JA, Blackstone EH, Cosgrove DM3rd. Vacuum-assisted venous return reduces blood usage. J Thorac Cardiovasc Surg. 2003;126:680–687. [CrossRef] [Google Scholar]
  5. Munster K, Andersen U, Mikkelsen J, Pettersson G. Vacuum assisted venous drainage (VAVD). Perfusion. 1999;14:419–423. [CrossRef] [PubMed] [Google Scholar]
  6. Hayashi Y, Kagisaki K, Yamaguchi T, et al. Clinical application of vacuum-assisted cardiopulmonary bypass with a pressure relief valve. Eur J Cardiothorac Surg. 2001;20:621–626. [CrossRef] [PubMed] [Google Scholar]
  7. Bevilacqua S, Matteucci S, Ferrarini M, et al. Biochemical evaluation of vacuum-assisted venous drainage: A randomized, prospective study. Perfusion. 2002;17:57–61. [CrossRef] [PubMed] [Google Scholar]
  8. Pappalardo F, Corno C, Franco A, et al. Reduction of hemodilution in small adults undergoing open heart surgery: A prospective, randomized trial. Perfusion. 2007;22:317–322. [CrossRef] [PubMed] [Google Scholar]
  9. Goksedef D, Omeroglu SN, Balkanay OO, et al. Hemolysis at different vacuum levels during vacuum-assisted venous drainage: A prospective randomized clinical trial. Thorac Cardiovasc Surg. 2012;60:262–262. [CrossRef] [PubMed] [Google Scholar]
  10. Lau CL, Posther KE, Stephenson GR, et al. Mini-circuit cardiopulmonary bypass with vacuum assisted venous drainage: Feasibility of an asanguineous prime in the neonate. Perfusion. 1999;14:389–396. [CrossRef] [PubMed] [Google Scholar]
  11. Darling E, Kaemmer D, Lawson S, et al. Experimental use of an ultra-low prime neonatal cardiopulmonary bypass circuit utilizing vacuum-assisted venous drainage. J Extra Corpor Technol. 1998;30:184–189. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Merkle F, Boettcher W, Schulz F, Koster A, Huebler M, Hetzer R. Perfusion technique for nonhaemic cardiopulmonary bypass prime in neonates and infants under 6 kg body weight. Perfusion. 2004;19:229–237. [CrossRef] [PubMed] [Google Scholar]
  13. Ging AL, St OngeJr, Fitzgerald DC, Collazo LR, Bower LS, Shen I. Bloodless cardiac surgery and the pediatric patient: A case study. Perfusion. 2008;23:131–134. [CrossRef] [PubMed] [Google Scholar]
  14. Durandy Y. The impact of vacuum-assisted venous drainage and miniaturized bypass circuits on blood transfusion in pediatric cardiac surgery. ASAIO J. 2009;55:117–120. [CrossRef] [PubMed] [Google Scholar]
  15. Durandy Y. Perfusionist strategies for blood conservation in pediatric cardiac surgery. World J Cardiol. 2010;2:27–33. [CrossRef] [Google Scholar]
  16. Durandy Y. Blood transfusion in pediatric cardiac surgery. Artif Organs. 2010;34:1057–1061. [CrossRef] [PubMed] [Google Scholar]
  17. Mitchell SJ, Pellett O, Gorman DF. Cerebral protection by lidocaine during cardiac operations. Ann Thorac Surg. 1999;67:1117–1124. [CrossRef] [Google Scholar]
  18. Mitchell SJ, Willcox T, McDougal C, Gorman DF. Emboli generation by the Medtronic Maxima hard-shell adult venous reservoir in cardiopulmonary bypass circuits: A preliminary report. Perfusion. 1996;11:145–155. [CrossRef] [PubMed] [Google Scholar]
  19. Mitchell S, Willcox T, Gorman D. Bubble generation and venous air filtration by hard-shell venous reservoirs: A comparative study. Perfusion. 1997;12:325–333. [CrossRef] [PubMed] [Google Scholar]
  20. McLaggan L, Willcox T, Mills B, Mann N, West T. Arterial line emboli in two current generation cardiopulmonary bypass circuits: Effects of venous air and pulsatile flow. Heart Surg Forum. 2002;6:206. [Google Scholar]
  21. Willcox T, Mitchell S, Gorman D. Venous air in the bypass circuit: A source of arterial line emboli exacerbated by vacuum-assisted drainage. Ann Thorac Surg. 1999;68:1285–1289. [CrossRef] [Google Scholar]
  22. Jones TJ, Deal DD, Vernon JC, Blackburn N, Stump DA. Does vacuum-assisted venous drainage increase gaseous microemboli during cardiopulmonary bypass? Ann Thorac Surg. 2002;74:2132–2137. [CrossRef] [Google Scholar]
  23. Lapietra A, Grossi EA, Pua BB, et al. Assisted venous drainage presents the risk of undetected air microembolism. J Thorac Cardiovasc Surg. 2000;120:856–862. [CrossRef] [Google Scholar]
  24. Willcox TW. Vacuum-assisted venous drainage: To air or not to air, that is the question. Has the bubble burst? J Extra Corpor Technol. 2002;34:24–28. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  25. DeFoe GR, Ross CS, Olmstead EM, et al. Lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass grafting. Northern New England Cardiovascular Disease Study Group. Ann Thorac Surg. 2001;71:769–776. [CrossRef] [Google Scholar]
  26. Shann KG, Likosky DS, Murkin JM, et al. An evidence-based review of the practice of cardiopulmonary bypass in adults: A focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response. J Thorac Cardiovasc Surg. 2006;132:283–290.e3. [CrossRef] [Google Scholar]
  27. Ferraris VA, Brown JR, Despotis GJ, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91:944–982. [CrossRef] [Google Scholar]
  28. Gibbons RJ, Smith S, Antman E. American College of Cardiology/American Heart Association clinical practice guidelines: Part I: Where do they come from? Circulation. 2003;107:2979–2986. [CrossRef] [PubMed] [Google Scholar]
  29. Lynch JE, Pouch A, Sanders R, Hinders M, Rudd K, Sevick J. Gaseous microemboli sizing in extracorporeal circuits using ultrasound backscatter. Ultrasound Med Biol. 2007;33:1661–1675. [CrossRef] [Google Scholar]
  30. Wang S, Undar A. Vacuum-assisted venous drainage and gaseous microemboli in cardiopulmonary bypass. J Extra Corpor Technol. 2008;40:249–256. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. Thiara AS, Eggereide V, Pedersen T, Lindberg H, Fiane AE. In vitro and in vivo evaluation of Dideco’s paediatric cardiopulmonary circuit for neonates weighing less than five kilograms. Perfusion. 2010;25:229–235. [CrossRef] [PubMed] [Google Scholar]
  32. Hudacko A, Sievert A, Sistino J. Gaseous microemboli in a pediatric bypass circuit with an unprimed venous line: An in vitro study. J Extra Corpor Technol. 2009;41:166–171. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Wang S, Baer L, Kunselman AR, Myers JL, Undar A. Delivery of gaseous microemboli with vacuum-assisted venous drainage during pulsatile and nonpulsatile perfusion in a simulated neonatal cardiopulmonary bypass model. ASAIO J. 2008;54:416–422. [CrossRef] [PubMed] [Google Scholar]
  34. Wang S, Woitas K, Clark JB, Myers JL, Undar A. Clinical real-time monitoring of gaseous microemboli in pediatric cardiopulmonary bypass. Artif Organs. 2009;33:1026–1030. [CrossRef] [PubMed] [Google Scholar]
  35. Willcox T, Mitchell SJ. The influence of vacuum assisted drainage on arterial line emboli. J Extra Corpor Technol. 2002;34:228–230. [Google Scholar]
  36. Willcox TW, Mitchell SJ. The influence of vacuum assisted drainage on arterial line emboli. J Extra Corpor Technol. 2002;34:228–229; author reply 229–30. [Google Scholar]
  37. Liu S, Newland RF, Tully PJ, Tuble SC, Baker RA. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters. J Extra Corpor Technol. 2011;43:107–114. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Groom RC, Quinn RD, Lennon P, et al. Detection and elimination of microemboli related to cardiopulmonary bypass. Circ Cardiovasc Qual Outcomes. 2009;2:191–198. [CrossRef] [PubMed] [Google Scholar]
  39. Taylor R, Borger M, Weisel R, Fedorko L, Feindel C. Cerebral microemboli during cardiopulmonary bypass: Increased emboli during perfusionist interventions. Ann Thorac Surg. 1999;68:89–93. [CrossRef] [Google Scholar]
  40. Willcox T, Mitchell SJ. Microemboli in our bypass circuits: A contemporary audit. J Extra Corpor Technol. 2009;41:31–37. [Google Scholar]
  41. Padayachee TS, Parsons S, Theobold R, Gosling RG, Deverall PB. The effect of arterial filtration on reduction of gaseous microemboli in the middle cerebral artery during cardiopulmonary bypass. Ann Thorac Surg. 1988;45:647–649. [CrossRef] [Google Scholar]
  42. Clark RE, Brillman J, Davis DA, Lovell MR, Price TR, Magovern GJ. Microemboli during coronary artery bypass grafting. Genesis and effect on outcome. J Thorac Cardiovasc Surg. 1995;109:249–257. [CrossRef] [Google Scholar]
  43. Pugsley W, Klinger L, Paschalis C, Treasure T, Harrison M, Newman S. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke. 1994;25:1393–1399. [CrossRef] [PubMed] [Google Scholar]
  44. Carrier M, Cyr A, Voisine P, et al. Vacuum-assisted venous drainage does not increase the neurological risk. Heart Surg Forum. 2002;5:285–288. [Google Scholar]
  45. Hills BA, James PB. Microbubble damage to the blood–brain barrier: Relevance to decompression sickness. Undersea Biomed Res. 1991;18:111–116. [Google Scholar]
  46. Stump DA. Deformable emboli and inflammation: Temporary or permanent damage? J Extra Corpor Technol. 2007;39:289–290. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Almany DK, Sistino JJ. Laboratory evaluation of the limitations of positive pressure safety valves on hard-shell venous reservoirs. J Extra Corpor Technol. 2002;34:115–117. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Kurusz M, Butler BD. Bubbles and bypass: An update. Perfusion. 2004;19 (Suppl 1):S49–55. [CrossRef] [PubMed] [Google Scholar]
  49. Matte GS, Kussman BD, Wagner JW, et al. Massive air embolism in a Fontan patient. J Extra Corpor Technol. 2011;43:79–83. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Davila RM, Rawles T, Mack MJ. Venoarterial air embolus: A complication of vacuum-assisted venous drainage. Ann Thorac Surg. 2001;71:1369–1371. [CrossRef] [Google Scholar]
  51. Jahangiri M, Rayner A, Keogh B, Lincoln C. Cerebrovascular accident after vacuum-assisted venous drainage in a Fontan patient: A cautionary tale. Ann Thorac Surg. 2001;72:1727–1728. [CrossRef] [Google Scholar]
  52. Willcox T. D’ou` Venons-nous/Que Somes Nous/Ou` Allons Nous? Accidents are inevitable. J Extra Corpor Technol. 2012;44:2–5. [Google Scholar]
  53. Angelos P. The ethical challenges of surgical innovation for patient care. Lancet. 2010;376:1046–1047. [CrossRef] [PubMed] [Google Scholar]
  54. Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354:353–365. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.