Free Access
Issue
J Extra Corpor Technol
Volume 46, Number 1, March 2014
Page(s) 60 - 66
DOI https://doi.org/10.1051/ject/201446060
Published online 15 March 2014
  1. Roach GW, Kanchuger M, Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med. 1996;335:1857–1863. [CrossRef] [PubMed] [Google Scholar]
  2. Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395–402. [CrossRef] [PubMed] [Google Scholar]
  3. Arrowsmith JE, Grocott HP, Reves JG, Newman MF. Central nervous system complications of cardiac surgery. Br J Anaesth. 2000;84:378–393. [CrossRef] [Google Scholar]
  4. Bokeriia LA, Golukhova EZ, Polunina AG. Postoperative delirium in cardiac operations: Microembolic load is an important factor. Ann Thorac Surg. 2009;88:349–350. [CrossRef] [Google Scholar]
  5. Groom RC, Quinn RD, Lennon P, et al. Microemboli from cardiopulmonary bypass are associated with a serum marker of brain injury. J Extra Corpor Technol. 2010;42:40–44. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Shann KG, Likosky DS, Murkin JM, et al. An evidence-based review of the practice of cardiopulmonary bypass in adults: A focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response. J Thorac Cardiovasc Surg. 2006;132:283–290. [CrossRef] [Google Scholar]
  7. Riley JB. Arterial line filters ranked for gaseous micro-emboli separation performance: An in vitro study. J Extra Corpor Technol. 2008;40:21–26. [Google Scholar]
  8. De Somer FM, Vetrano MR, Van Beeck JP, Van Nooten GJ. Extracorporeal bubbles: A word of caution. Interact Cardiovasc Thorac Surg. 2010;10:995–1001. [CrossRef] [PubMed] [Google Scholar]
  9. Herbst DP. The effects of pressure on gases in solution: Possible insights to improve microbubble filtration for extracorporeal circulation. J Extra Corpor Technol. 2013;45:94–106. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Willcox TW, Mitchell SJ. Microemboli in our bypass circuits: A contemporary audit. J Extra Corpor Technol. 2009;41:31–37. [Google Scholar]
  11. Pugsley W, Klinger L, Paschalis C, Treasure T, Harrison M, Newman S. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke. 1994;25:1393–1399. [CrossRef] [PubMed] [Google Scholar]
  12. Kruis RW, Vlasveld FA, Van Dijk D. The (un)importance of cerebral microemboli. Semin Cardiothorac Vasc Anesth. 2010;14:111–118. [CrossRef] [PubMed] [Google Scholar]
  13. Martin KK, Wigginton JB, Babikian VL, Pochay VE, Crittenden MD, Rudolph JL. Intraoperative cerebral high-intensity transient signals and postoperative cognitive function: A systematic review. Am J Surg. 2009;197:55–63. [CrossRef] [Google Scholar]
  14. De Somer F. Evidence-based used, yet still controversial: The arterial filter. J Extra Corpor Technol. 2012;44:27–30. [Google Scholar]
  15. Guan Y, Palanzo D, Kunselman A, Undar A. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops. Artif Organs. 2009;33:1037–1043. [CrossRef] [PubMed] [Google Scholar]
  16. De Somer F. Impact of oxygenator characteristics on its capability to remove gaseous microemboli. J Extra Corpor Technol. 2007;39:271–273. [Google Scholar]
  17. Dickinson TA, Riley JB, Crowley JC, Zabetakis PM. In vitro evaluation of the air separation ability of four cardiovascular manufacturer extracorporeal circuit designs. J Extra Corpor Technol. 2006;38:206–213. [Google Scholar]
  18. Preston TJ, Gomez D, Olshove VF, Phillips A, Galantowicz M. Clinical gaseous microemboli assessment of an oxygenator with integral arterial filter in the pediatric population. J Extra Corpor Technol. 2009;41:226–230. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Melchior RW, Rosenthal T, Glatz AC. An in vitro comparison of the ability of three commonly used pediatric cardiopulmonary bypass circuits to filter gaseous microemboli. Perfusion. 2010;25:255–263. [CrossRef] [PubMed] [Google Scholar]
  20. Lin J, Dogal NM, Mathis RK, Qiu F, Kunselman A, Ündar A. Evaluation of Quadrox-I and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass. Perfusion. 2012;27:235–243. [CrossRef] [PubMed] [Google Scholar]
  21. Gomez D, Preston TJ, Olshove VF, Phillips AB, Galantowicz ME. Evaluation of air handling in a new generation neonatal oxygenator with integral arterial filter. Perfusion. 2009;24:107–112. [CrossRef] [PubMed] [Google Scholar]
  22. Chandran KB, Khalighi B. A note on the blood analog for in-vitro testing of heart valve bioprostheses. J Biomech Eng. 1984;106:112–114. [CrossRef] [PubMed] [Google Scholar]
  23. Lindholm L, Engström KG. Endogenous gas formation—An in vitro study with relevance to gas microemboli during cardiopulmonary bypass. J Extra Corpor Technol. 2012;44:126–133. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Selnes OA, Gottesman RF, Grega MA, Baumgartner WA, Zeger SL, McKhann GM. Cognitive and neurologic outcomes after coronaryartery bypass surgery. N Engl J Med. 2012;366:250–257. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.