Free Access
Issue |
J Extra Corpor Technol
Volume 48, Number 3, September 2016
|
|
---|---|---|
Page(s) | 129 - 136 | |
DOI | https://doi.org/10.1051/ject/201648129 | |
Published online | 15 September 2016 |
- Butler B. D. Gaseous micro emboli: Concepts and considerations. J Extra Corpor Technol. 1983;15:6. [Google Scholar]
- Kurusz M., Butler B. Bubbles and bypass: An update. Perfusion. 2004;19:S49–S55. [CrossRef] [PubMed] [Google Scholar]
- Willcox T. W., Mitchell S. J. Microemboli in our bypass circuit: A contemporary audit. J Extra Corpor Technol. 2009;41:31–7. [Google Scholar]
- DeFoe G. R., Dame N. A., Farrell M. S., Ross C. S., Langner C. W., Likosky D. S. Embolic activity during in vivo cardiopulmonary bypass. J Extra Corpor Technol. 2014;46:150–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lynch J. E., Riley J. B. Microemboli detection on extracorporeal bypass circuits. Perfusion. 2008;23:23–32. [CrossRef] [PubMed] [Google Scholar]
- Lou S., Ji B., Liu J., Yu K., Long C. Generation, detection, and prevention of microemboli during cardiopulmonary bypass procedure. Int J Artif Organs. 2011;24:1039–51. [CrossRef] [PubMed] [Google Scholar]
- Riley J. B., Scott P. D., Schears G. J. Update on safety equipment for extracorporeal life support (ECLS) circuits. Semin Cardiothorac Vasc Anesth. 2009;13:138–45. [CrossRef] [PubMed] [Google Scholar]
- Somer F. Impact of oxygenator characteristics on its capability to remove gaseous microemboli. J Extra Corpor Technol. 2007;39:271–3. [Google Scholar]
- Zanatta P., Forti A., Bosco E., et al. Microembolic signals and strategy to prevent gas embolism during extracorporeal membrane oxygenation. J Cardiothorac Surg. 2010;5:5. [CrossRef] [Google Scholar]
- Burnside J., Gomez D., Preston T. J., Olshove V. F., Phillips A. In-vitro quantification of gaseous microemboli in two extracorporeal life support circuits. J Extra Corpor Technol. 2011;43:123–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Jiao Y., Schonberger R. B., Gross J. B., Gipson K. E. Numerous arterial gas emboli occur during closed-circuit extracorporeal membrane oxygenation. Farmington, CT: University of Connecticut School of Medicine. [Google Scholar]
- Sauer C. M., Yuh D. D., Bonde P. Extracorporeal membrane oxygenation use has increased by 433% in adults in the United States from 2006 to 2011. ASAIO J. 2015;61:31–6. [CrossRef] [PubMed] [Google Scholar]
- Risnes I., Wagner K., Nome T., et al. Cerebral outcome in adult patients treated with extracorporeal membrane oxygenation. Ann Thorac Surg. 2006;81:1401–6. [CrossRef] [Google Scholar]
- Gipson K. E., Rosinski D. J., Schonberger R. B., et al. Elimination of gaseous microemboli from cardiopulmonary bypass using hypobaric oxygenation. Ann Thorac Surg. 2014;3:879–86. [CrossRef] [Google Scholar]
- Clingan S., Schuldes M., Francis S., et al. In vitro elimination of gaseous microemboli utilizing hypobaric oxygenation in the Terumo FX15 oxygenator. Perfusion. 2016;31:552–9. [CrossRef] [PubMed] [Google Scholar]
- Duncan P. B., Needham D. Test of the Epstein-Plesset model for gas microparticle dissolution in aqueous media: Effect of surface tension and gas undersaturation in solution. Langmuir. 2004;20:2567–78. [CrossRef] [PubMed] [Google Scholar]
- Young R. W. Hyperoxia: A review of the risks and benefits in adult cardiac surgery. J Extra Corpor Technol. 2012;44:241–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Sleep J., Syhre I., Evans E. Blood temperature management and gaseous microemboli creation: An in-vitro analysis. J Extra Corpor Technol. 2010;42:219–22. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.