Free Access
J Extra Corpor Technol
Volume 54, Number 3, September 2022
Page(s) 191 - 202
Published online 15 September 2022
  1. Kim SJ, Kim HJ, Lee HY, et al. . Comparing extracorporeal cardiopulmonary resuscitation with conventional cardiopulmonary resuscitation: A meta-analysis. Resuscitation. 2016;103:106–16. [CrossRef] [Google Scholar]
  2. Link MS, Berkow LC, Kudenchuk PJ, et al. Part 7: Adult advanced cardiovascular life support: 2015 American Heart Association Guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S444–64. [Google Scholar]
  3. Kim SJ, Jung JS, Park JH, et al. An optimal transition time to extracorporeal cardiopulmonary resuscitation for predicting good neurological outcome in patients with out-of-hospital cardiac arrest: A propensity-matched study. Crit Care. 2014;18:535. [Google Scholar]
  4. Kragholm K, Wissenberg M, Mortensen RN, et al. . Bystander efforts and 1-year outcomes in out-of-hospital cardiac arrest. N Engl J Med. 2017;376:1737–47. [CrossRef] [PubMed] [Google Scholar]
  5. Ellouze O, Vuillet M, Perrot J, et al. . Comparable outcome of out-of-hospital cardiac arrest and in-hospital cardiac arrest treated with extracorporeal life support. Artif Organs. 2018;42:15–21. [CrossRef] [Google Scholar]
  6. Goto T, Morita S, Kitamura T, et al. Impact of extracorporeal cardiopulmonary resuscitation on outcomes of elderly patients who had out-of-hospital cardiac arrests: A single-centre retrospective analysis. BMJ Open. 2018;8:e019811. [CrossRef] [Google Scholar]
  7. Patil KD, Halperin HR, Becker LB. Cardiac arrest: Resuscitation and reperfusion. Circ Res. 2015;116:2041–9. [CrossRef] [PubMed] [Google Scholar]
  8. Madathil RJ, Hira RS, Stoeckl M, et al. Ischemia reperfusion injury as a modifiable therapeutic target for cardioprotection or neuroprotection in patients undergoing cardiopulmonary resuscitation. Resuscitation. 2016;105:85–91. [CrossRef] [Google Scholar]
  9. Topjian AA, de Caen A, Wainwright MS, et al. . Pediatric post-cardiac arrest care: A scientific statement from the American Heart Association. Circulation. 2019;140:e194–233. [CrossRef] [PubMed] [Google Scholar]
  10. Taunyane IC, Benk C, Beyersdorf F, et al. . Preserved brain morphology after controlled automated reperfusion of the whole body following normothermic circulatory arrest time of up to 20 minutes. Eur J Cardiothorac Surg. 2016;50:1025–34. [CrossRef] [PubMed] [Google Scholar]
  11. Trummer G, Foerster K, Buckberg GD, et al. . Superior neurologic recovery after 15 minutes of normothermic cardiac arrest using an extracorporeal life support system for optimized blood pressure and flow. Perfusion. 2014;29:130–8. [CrossRef] [PubMed] [Google Scholar]
  12. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann Intern Med. 2009;151:264–9, W64. [CrossRef] [PubMed] [Google Scholar]
  13. Saemann L, Schmucker C, Rösner L, et al. Perfusion parameters and target values during extracorporeal cardiopulmonary resuscitation: A scoping review protocol. BMJ Open. 2019;9:e030562. [CrossRef] [Google Scholar]
  14. National Heart, Lung and Blood Institute. Study Quality Assessment Tools: Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Available at: Accessed December 17, 2020. [Google Scholar]
  15. R Development Core Team. R: A language and environment for statistical computing. 2020. Available at: Accessed October 13, 2020. [Google Scholar]
  16. Safar P. Resuscitation after brain ischemia. In: Grenvik A and Safar P., eds. Brain Failure and Resuscitation. New York: Churchill Livingstone; 1981: 155–84. [Google Scholar]
  17. Hutin A, Abu-Habsa M, Burns B, et al. Early ECPR for out-of-hospital cardiac arrest: Best practice in 2018. Resuscitation. 2018;130:44–8. [CrossRef] [Google Scholar]
  18. Fjølner J, Greisen J, Jørgensen MRS, et al. . Extracorporeal cardiopulmonary resuscitation after out-of-hospital cardiac arrest in a Danish health region. Acta Anaesthesiol Scand. 2017;61:176–85. [CrossRef] [Google Scholar]
  19. Kagawa E, Inoue I, Kawagoe T, et al. Assessment of outcomes and differences between in- and out-of-hospital cardiac arrest patients treated with cardiopulmonary resuscitation using extracorporeal life support. Resuscitation. 2010;2010:968–73. [CrossRef] [Google Scholar]
  20. Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Soft. 2010;36. [Google Scholar]
  21. Lamhaut L, Jouffroy R, Soldan M, et al. Safety and feasibility of prehospital extra corporeal life support implementation by non-surgeons for out-of-hospital refractory cardiac arrest. Resuscitation. 2013;84:1525–9. [CrossRef] [Google Scholar]
  22. Avalli L, Maggioni E, Formica F, et al. Favourable survival of in-hospital compared to out-of-hospital refractory cardiac arrest patients treated with extracorporeal membrane oxygenation: An Italian tertiary care centre experience. Resuscitation. 2012;2012:579–83. [CrossRef] [Google Scholar]
  23. D’Arrigo S, Cacciola S, Dennis M, et al. Predictors of favourable outcome after in-hospital cardiac arrest treated with extracorporeal cardiopulmonary resuscitation: A systematic review and meta-analysis. Resuscitation. 2017;2017:62–70. [CrossRef] [Google Scholar]
  24. Yannopoulos D, Bartos JA, Martin C, et al. Minnesota resuscitation consortium’s advanced perfusion and reperfusion cardiac life support strategy for out-of-hospital refractory ventricular fibrillation. J Am Heart Assoc. 2016;5:e003732. [CrossRef] [Google Scholar]
  25. Vedel AG, Holmgaard F, Rasmussen LS, et al. High-Target versus low-target blood pressure management during cardiopulmonary bypass to prevent cerebral injury in cardiac surgery patients: A randomized controlled trial. Circulation. 2018;137:1770–80. [CrossRef] [PubMed] [Google Scholar]
  26. Fritz C, Kimmoun A, Vanhuyse F, et al. High versus low blood-pressure target in experimental ischemic prolonged cardiac arrest treated with extra corporeal life support. Shock. 2017;47:759–64. [Google Scholar]
  27. Asfar P, Meziani F, Hamel J-F, et al. . High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93. [CrossRef] [PubMed] [Google Scholar]
  28. Klijian A, Khanna AK, Reddy VS, et al. Treatment with angiotensin II is associated with rapid blood pressure response and vasopressor sparing in patients with vasoplegia after cardiac surgery: A post-Hoc analysis of angiotensin II for the treatment of high-output shock (ATHOS-3) study. J Cardiothorac Vasc Anesth. 2020;35:51–58. [Google Scholar]
  29. Al-Fares AA, Randhawa VK, Englesakis M, et al. Optimal strategy and timing of left ventricular venting during veno-arterial extracorporeal life support for adults in cardiogenic shock: A systematic review and meta-analysis. Circ Heart Fail. 2019;12:e006486. [CrossRef] [PubMed] [Google Scholar]
  30. Vander Heide RS, Steenbergen C. Cardioprotection and myocardial reperfusion: Pitfalls to clinical application. Circ Res. 2013;113:464–77. [CrossRef] [PubMed] [Google Scholar]
  31. Staat P, Rioufol G, Piot C, et al. Postconditioning the human heart. Circulation. 2005;112:2143–8. [CrossRef] [PubMed] [Google Scholar]
  32. Thibault H, Piot C, Staat P, et al. Long-term benefit of postconditioning. Circulation. 2008;117:1037–44. [CrossRef] [PubMed] [Google Scholar]
  33. Yellon DM, Opie LH. Postconditioning for protection of the infarcting heart. Lancet. 2006;2006:456–8. [CrossRef] [Google Scholar]
  34. Wengenmayer T, Schroth F, Biever PM, et al. Albumin fluid resuscitation in patients on venoarterial extracorporeal membrane oxygenation (VA-ECMO) therapy is associated with improved survival. Intensive Care Med. 2018;2018:2312–4. [CrossRef] [PubMed] [Google Scholar]
  35. Roedl K, Jarczak D, Becker S, et al. Long-term neurological outcomes in patients aged over 90 years who are admitted to the intensive care unit following cardiac arrest. Resuscitation. 2018;2018:6–12. [CrossRef] [Google Scholar]
  36. Delaney M, Wendel S, Bercovitz RS, et al. Transfusion reactions: prevention, diagnosis, and treatment. Lancet. 2016;388:2825–36. [CrossRef] [Google Scholar]
  37. Gaisendrees C, Djordjevic I, Sabashnikov A, et al. Impact of left ventricular unloading using a peripheral Impella®-pump in eCPR patients. Artif Organs. 2022;46:451–9. [CrossRef] [PubMed] [Google Scholar]
  38. Perkins GD, Jacobs IG, Nadkarni VM, et al. . Cardiac arrest and cardiopulmonary resuscitation outcome reports: Update of the Utstein resuscitation registry templates for out-of-hospital cardiac arrest: A statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Circulation. 2015;132:1286–300. [CrossRef] [PubMed] [Google Scholar]
  39. Komeyama S, Takagi K, Tsuboi H, et al. The early initiation of extracorporeal life support may improve the neurological outcome in adults with cardiac arrest due to cardiac events. Intern Med. 2019;58:1391–7. [CrossRef] [PubMed] [Google Scholar]
  40. Kim YS, Lee YJ, Won KB, et al. . Extracorporeal cardiopulmonary resuscitation with therapeutic hypothermia for prolonged refractory in-hospital cardiac arrest. Korean Circ J. 2017;47:939–48. [CrossRef] [PubMed] [Google Scholar]
  41. Gil E, Na SJ, Ryu J-A, et al. . Association of body mass index with clinical outcomes for in-hospital cardiac arrest adult patients following extracorporeal cardiopulmonary resuscitation. PLoS One. 2017;12:e0176143. [CrossRef] [Google Scholar]
  42. Ryu J-A, Chung CR, Cho YH, et al. The association of findings on brain computed tomography with neurologic outcomes following extracorporeal cardiopulmonary resuscitation. Crit Care. 2017;21:15. [Google Scholar]
  43. Spangenberg T, Meincke F, Brooks S, et al. “Shock and Go?” extracorporeal cardio-pulmonary resuscitation in the golden-hour of ROSC. Catheter Cardiovasc Interv. 2016;88:691–6. [CrossRef] [Google Scholar]
  44. Jung C, Janssen K, Kaluza M, et al. . Outcome predictors in cardiopulmonary resuscitation facilitated by extracorporeal membrane oxygenation. Clin Res Cardiol. 2016;105:196–205. [CrossRef] [PubMed] [Google Scholar]
  45. Brunet J, Valette X, Ivascau C, et al. . Extracorporeal life support for refractory cardiac arrest or shock: A 10-year study. ASAIO J. 2015;61:676–81. [CrossRef] [PubMed] [Google Scholar]
  46. Stub D, Bernard S, Pellegrino V, et al. Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation. 2015;2015:88–94. [CrossRef] [Google Scholar]
  47. Chou T-H, Fang C-C, Yen Z-S, et al. An observational study of extracorporeal CPR for in-hospital cardiac arrest secondary to myocardial infarction. Emerg Med J. 2014;31:441–7. [CrossRef] [PubMed] [Google Scholar]
  48. Haneya A, Philipp A, Diez C, et al. A 5-year experience with cardiopulmonary resuscitation using extracorporeal life support in non-postcardiotomy patients with cardiac arrest. Resuscitation. 2012;2012:1331–7. [CrossRef] [Google Scholar]
  49. Otani T, Sawano H, Natsukawa T, et al. D-dimer predicts bleeding complication in out-of-hospital cardiac arrest resuscitated with ECMO. Am J Emerg Med. 2018;2018:1003–8. [CrossRef] [Google Scholar]
  50. Chouihed T, Kimmoun A, Lauvray A, et al. Improving patient selection for refractory out of hospital cardiac arrest treated with extracorporeal life support. Shock. 2018;49:24–8. [Google Scholar]
  51. Yukawa T, Kashiura M, Sugiyama K, et al. Neurological outcomes and duration from cardiac arrest to the initiation of extracorporeal membrane oxygenation in patients with out-of-hospital cardiac arrest: A retrospective study. Scand J Trauma Resusc Emerg Med. 2017;25:95. [CrossRef] [Google Scholar]
  52. Leick J, Liebetrau C, Szardien S, et al. Door-to-implantation time of extracorporeal life support systems predicts mortality in patients with out-of-hospital cardiac arrest. Clin Res Cardiol. 2013;102:661–9. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.