Open Access
Issue
J Extra Corpor Technol
Volume 42, Number 1, March 2010
Page(s) 20 - 29
DOI https://doi.org/10.1051/ject/201042020
Published online 15 March 2010
  1. Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. Lancet. 2005;366:1719–24. [CrossRef] [PubMed] [Google Scholar]
  2. Ragnarson Tennvall G, Apelqvist J. Health-economic consequence of diabetic foot lesion. Clin Infect Dis. 2004:39:S132–9. [CrossRef] [PubMed] [Google Scholar]
  3. Abbott CA, Carrington AL, Ashe H, et al. The Northwest Diabetes Foot Care Study: Incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort. Diabet Med. 2002;19:377–84. [CrossRef] [Google Scholar]
  4. Abbott CA, Vileikyte L, Williamson S, Carrington AL, Boulton AJM. Multicentre study of the incidence of and predictive factors for diabetic neuropathic foot ulcers. Diabetes Care. 1998;21:1071–5. [CrossRef] [PubMed] [Google Scholar]
  5. Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA. 2005;293:217–28. [CrossRef] [PubMed] [Google Scholar]
  6. Shearer A, Schuffham P, Gordiois A, Ogleshy A. Predicted costs and outcomes from reduced vibration detection in people with diabetes in the US. Diabetes Care. 2003;26:2305–10. [CrossRef] [PubMed] [Google Scholar]
  7. Most RS, Sinnock P. The epidemiology of lower extremity amputations in diabetic individuals. Diabetes Care. 1983;6:87–91. [CrossRef] [PubMed] [Google Scholar]
  8. Hogan P, Dall T, Nikolov P; American Diabetes Association. Economic costs of diabetes in the US in 2002. Diabetes Care. 2003;26:917–32. [CrossRef] [PubMed] [Google Scholar]
  9. Saar WE, Lee TH, Berlet GC. Economic burden of diabetic foot and ankle disorder. Foot Ankle Int. 2005;26:27–31. [CrossRef] [PubMed] [Google Scholar]
  10. Consensus development of conference in diabetic foot wound care. 7–8 April 1999, Boston, Massachusetts, American Diabetes Association. J Am Podiatr Med Assoc. 1999;89:475–83. [CrossRef] [PubMed] [Google Scholar]
  11. Sheehan P, Jones P, Caseli A. Percent change in wound area of diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12 week prospective trial. Diabetes Care. 2003;26:1879–82. [CrossRef] [PubMed] [Google Scholar]
  12. Robson MC, Thomason A, Pierce GF, Philips LG, Robson LE. Platelet-derived growth factor BB for the treatment of chronic pressure ulcers. Lancet. 1992;339:23–5. [CrossRef] [PubMed] [Google Scholar]
  13. Reiber GE, Vileikyte L, Boyko EJ, et al. Causal pathway for incident lower extremity ulcers in patients with diabetes from two settings. Diabetes Care. 1999;22:157–62. [CrossRef] [PubMed] [Google Scholar]
  14. Shaw JE, van Schie CH, Carrington AL, Abbott CA, Boulton AJ. An analysis of dynamic forces transmitted through the foot in diabetic neuropathy. Diabetes Care. 1998;2:1955–9. [CrossRef] [PubMed] [Google Scholar]
  15. Steel DL, Donohoe D, Webster MW, Lindsley L; Diabetic Ulcer Study Group. Effect of extensive debridement and treatment on the healing of diabetic foot ulcers. J Am Coll Surg. 1996;183:61–4. [Google Scholar]
  16. Nwomeh BC, Liang HX, Cohen IK, Yager DR. MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J Surg Res. 1999;81:189–95. [CrossRef] [Google Scholar]
  17. He Z, King GL. Micro vascular complication of diabetes. Endocrinol Metab Clin North Am. 2004;33:215–58. [CrossRef] [Google Scholar]
  18. Bucalo B, Eaglstein WH, Falanga V. Inhibition of cell proliferation by chronic wound fluid. Wound Repair Regen. 1993;1:181–6. [CrossRef] [PubMed] [Google Scholar]
  19. Bennett NF, Schultz GS. Growth factors and wound healing. Part 11: Role in normal and chronic wound healing. Am J Surg. 1993;166:74–81. [CrossRef] [Google Scholar]
  20. Yager DR, Nwomeh BC. The proteolytic environment of chronic wounds. Wound Repair Regen. 1999;7:433–41. [CrossRef] [PubMed] [Google Scholar]
  21. Palolahti M, Lauharanta J, Vaheri A. et al. Proteolytic activity of leg ulcer exudates. Exp Dermatol. 1993;2:29–37. [CrossRef] [PubMed] [Google Scholar]
  22. Chen SM, Ward SI, Olutoye OO, Diegelmann RF, Kelman CI. Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastase activity and diminished levels of proteinase inhibitors. Wound Rep Regen. 1997;5:23–32. [CrossRef] [PubMed] [Google Scholar]
  23. Morasso MI, Tomic-Canic M. Epidermal stem cells, the cradle of epidermal determination and wound healing. Biol Cell. 2005;97:173–83. [CrossRef] [PubMed] [Google Scholar]
  24. Waikel RL, Kawachi Y, Waikel PA, Wana XJ, Roop DR. Deregulation expression of c-myc depletes epidermal stem cells. Nat Genet. 2001;28:165–8. [CrossRef] [PubMed] [Google Scholar]
  25. Arnold I, Watt FM. c-myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol. 2001;11:558–68. [CrossRef] [Google Scholar]
  26. Stojadinovic O, Brem H, Tomi-Canic M, et al. Molecular pathogenesis of chronic wounds: The role of β catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol. 2005;167:59–69. [CrossRef] [Google Scholar]
  27. Gandarillas A, Watt FM. c-Myc promotes differentiation of human epidermal stem cells. Genes Dev. 1997;11:2869–82. [CrossRef] [PubMed] [Google Scholar]
  28. Oster SK, Marhin WW, Asker C, et al. Myc is an essential negative regulator of platelet-derived growth factor beta receptor expression. Mol Cell Biol. 2000;20:6768–78. [CrossRef] [Google Scholar]
  29. Wang Y, He H, Zigler JSJr, et al. bFGF suppresses serum-deprivation-induced apoptosis in a human lens epithelia cell line. Exp Cell Res. 1999;249:123–30. [CrossRef] [Google Scholar]
  30. Izadnegahdar MF, Rathanasiwami P, Shah RM. Effects of EGF and TGF beta-1 myc gene expression and DNA synthesis in embryonic hamster palate mesenchyme cells. Anat Rec. 1999;254:453–64. [CrossRef] [PubMed] [Google Scholar]
  31. Alder SC, Kent KJ. Enhancing wound healing with growth factors. Facial Plast Surg Clin North Am. 2002;10:129–46. [CrossRef] [Google Scholar]
  32. Steel DL. The Diabetic Ulcer Study Group: Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetics ulcers. J Vasc Surg. 1995;21:71–81. [CrossRef] [Google Scholar]
  33. Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomised placebo-controlled study. Diabetic Care. 1998;21:822–7. [CrossRef] [PubMed] [Google Scholar]
  34. Everts PA, Knape JT, Weibrich, et al. Platelet-rich plasma and platelet gel: A review. J Extra Corpor Technol. 2006;38:174–87. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth (VEGF) and its receptors. FASEB J. 1999;13:9. [CrossRef] [PubMed] [Google Scholar]
  36. Lawrence W, Diegelmann R. Growth factors in wound healing. Clin Dermatol. 1994;12:157–69. [CrossRef] [Google Scholar]
  37. Grotendorst G, Soma Y, Takehara K, et al. EGF and TGF-alpha are potent chemo attractants for endothelial cells and EGF-like peptides are present at sites of tissue regeneration. J Cell Physiol. 1989;139:617–23. [CrossRef] [PubMed] [Google Scholar]
  38. McGee G, Davidson JM, Buckley A, et al. Recombinant basic fibroblast growth factor accelerates wound healing. J Surg Res. 1998;45:145–53. [Google Scholar]
  39. Cross K, Mustoe T. Growth factors in wound healing. Surg Clin North Am. 2003;83:531–45. [CrossRef] [Google Scholar]
  40. Beer H, Gassmann M, Munz B, et al. Expression and function of keratinocyte growth and activin in skin morphogenesis and cutaneous wound repair. J Investig Dermatol Symp Proc. 2000;5:34–9. [CrossRef] [Google Scholar]
  41. Massague J. The TGF-beta family of growth and differentiation factors. Cell. 1987;49:437–8. [CrossRef] [PubMed] [Google Scholar]
  42. Wahl S, Hunt D, Wakefield L, et al. Transforming growth factor type beta induces monocyte chemo taxis and growth factor production. Proc Natl Acad Sci USA. 1987;84:5788. [CrossRef] [PubMed] [Google Scholar]
  43. Sporn MB, Roberts AB, Wakefield L, et al. Transforming growth factors-beta: Biological function and chemical structure. Science. 1986;233:532–4. [CrossRef] [PubMed] [Google Scholar]
  44. Edwards DR, Murphy G, Reynolds JJ, et al. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J. 1987;6:1899–904. [CrossRef] [Google Scholar]
  45. Bassols A, Massague J. Transforming growth factor beta regulates the expression and structure of extracellular matrix chondroitin/dermatan sulphate proteoglycans. J Biol Chem. 1988;263:3039–45. [CrossRef] [Google Scholar]
  46. Fukamizu J, Grinnell F. Spatial organization of extracellular matrix and fibroblast activity: Effects of serum, TGF-beta and fibronectin. Exp Cell Res. 1990;190:276–82. [CrossRef] [Google Scholar]
  47. Guler HP, Zapf J, Scheiwiller E, Friesch ER. Recombinant human insulin-like growth I stimulate growth and has distinct effects on organ size in hypophysectomized rats. Proc Natl Acad Sci USA. 1988;85:4889–93. [CrossRef] [PubMed] [Google Scholar]
  48. Grant M, Jerdan J, Merimere T. Insulin-like growth factor-I modulate endothelial cell chemotaxis. J Clin Endocrinol Metab. 1987;65:370–1. [CrossRef] [PubMed] [Google Scholar]
  49. Kubota S, Kawata K, Yanagita T, Doi H, Kitoh T, Takigawa M. Abundant retention and release of connective tissue growth factor (CTGF/CCN2) by platelets. J. Biochem. 2004;136:279–82. [CrossRef] [PubMed] [Google Scholar]
  50. Cooper DM, Yu EZ, Hennessey P, Ko F, Robson MC. Determination of endogenous cytokines in chronic wounds. Ann Surg. 1994;219:688–91. [CrossRef] [PubMed] [Google Scholar]
  51. Eppley BL, Woodell JE, Higgins J. Platelet quantification and growth factors analysis from platelet-rich plasma: Implications for wound healing. Plast Reconstr Surg. 2004;114:1502–8. [CrossRef] [PubMed] [Google Scholar]
  52. Marx RE. Platelet-rich plasma (PRP): What is PRP and what is not PRP? Implant Dent. 2001;10:225–8. [CrossRef] [PubMed] [Google Scholar]
  53. Weibrich G, Kleis WK, Hafner G, et al. Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J Craniomaxillofac Surg. 2002;30:97–102. [CrossRef] [Google Scholar]
  54. Marx RE. Platelet-rich platelet plasma: Evidence to support its use. J Oral Maxillofac Surg. 2004;62:489–96. [CrossRef] [Google Scholar]
  55. Anitua E, Andia I, Ardanza B, et al. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004;91:4–15. [CrossRef] [PubMed] [Google Scholar]
  56. Knighton DR, Ciresi KF, Fiegel VD, Austin LL, Butler ER. Classification and treatment of chronic nonhealing wounds. Successful treatment with autologous platelet-derived wound healing factors (PDWHF). Ann Surg. 1986;204:322–30. [CrossRef] [PubMed] [Google Scholar]
  57. Knighton DR, Ciresi K, Fiegel VD, Schumerth S, Butler EM, Ceira F. Stimulation of repair in chronic, non-healing cutaneous ulcers using platelet-derived wound healing formula. Sur Gynecol Obstet. 1990;170:56–60. [Google Scholar]
  58. Ganio C, Tenewitz FE, Wilson RC, Moyles BG. The treatment of chronic non-healing wounds using autologous platelet-derived growth factors. J Foot Ankle Surg. 1993;32:263–8. [Google Scholar]
  59. Fohn M, Bannasch H. Artificial skin. Methods Mol Med. 2007;140:167–82. [CrossRef] [PubMed] [Google Scholar]
  60. Trent JF, Kirsner RS. Tissue engineered skin; Apligraf, a bilayered living skin equivalent. Int J Clin Pract. 1998;52:408–13. [CrossRef] [PubMed] [Google Scholar]
  61. Stark HJ, Willhank MJ, Mirancea N, et al. Authentic fibroblast matrix in dermal matrix in dermal matrix equivalents normalises epidermal histogenesis and dermoepider mal junction in organotypic co-culture. Eur J Cell Biol. 2004;83:631–45. [CrossRef] [Google Scholar]
  62. Veves A, Falanga V, Armstrong DG, Sabolinski ML. Apligraf Diabetic Foot Ulcer Study. Graft skin, a human skin equivalent, is effective in the management of non-infected neuro pathic diabetic foot ulcers. A prospective randomised multicentre clinical trial. Diabetic Care. 2001;24:290–5. [CrossRef] [PubMed] [Google Scholar]
  63. Christie RJ, Carrington L, Alving B. Post operative bleeding induced by topical bovine thrombin: Report of cases. Surgery. 1997;121:708–10. [CrossRef] [PubMed] [Google Scholar]
  64. Grant WP, Jerlin EA, Pietrzak WS, et al. The utilization of autologous growth factors for the facilitation of fusion in complex neuropathic fractures in diabetic population. Clin Podiatr Med Surg. 2005;22:561–84. [CrossRef] [Google Scholar]
  65. Driver VR, Hanft J, Fylling CP, Beriou JM. Autologous Diabetic Foot Ulcer Study Group. A prospective randomised, controlled trial of autologous platelet-rich plasma gel for the treatment of diabetic. Ostomy Wound Manage. 2006;52:68–74. [Google Scholar]
  66. Cassidy LK, Finney AS, Ellis WC, Spiwak AJ, Riley JB. Quantifying platelet gel coagulation using Sonoclot and Thrombelastograph hemostasis analyser. J Extra Corpor Technol. 2005;37:48–51. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.