Free Access
Issue
J Extra Corpor Technol
Volume 46, Number 3, September 2014
Page(s) 229 - 238
DOI https://doi.org/10.1051/ject/201446229
Published online 15 September 2014
  1. Hammon JW, Stump DA, Kon ND, et al. Risk factors and solutions for the development of neurobehavioural changes after coronary artery bypass grafting. Ann Thorac Surg. 1997;63:1613–1618. [CrossRef] [Google Scholar]
  2. Abu-Omar Y, Balacumaraswami L, Pigott DW, Matthews PM, Taggart DP. Solid and gaseous cerebral microembolisation during off-pump, on-pump, and open cardiac surgery procedures. J Thorac Cardiovasc Surg. 2004;127:1759–1765. [CrossRef] [Google Scholar]
  3. Pugsley W, Klinger L, Paschalis C, Treasure T, Harrison M, Newman S. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke. 1994;25:1393–1399. [CrossRef] [PubMed] [Google Scholar]
  4. Taggart DP, Bhattacharya K, Meston N, et al. Serum S-100 protein concentration after cardiac surgery: A randomized trial of arterial line filtration. Eur J Cardiothorac Surg. 1997;11:645–649. [CrossRef] [Google Scholar]
  5. Medtronic Inc. Affinity Fusion Oxygenation System, 2013 Available at: http://www.fusionoxygenator.com. Accessed June 4, 2014. [Google Scholar]
  6. Rudolph JL, Tilahun D, Treanor PR, et al. Use of a large bore syringe creates significantly fewer high intensity transient signals (HITS) into a cardiopulmonary bypass system than a small bore syringe. Perfusion. 2006;21:67–71. [CrossRef] [PubMed] [Google Scholar]
  7. Gesellschaft für Angewandte Medizinische Physik und Technik mbH. Bubble Counter BC100: A device for the detection of micro bubbles in streaming fluids [User Manual]. Merseburg, Germany: GAMPT mbH; 4 2010. [Google Scholar]
  8. Yatani K. Statistics for HCI Research: Mann-Whitney. Available at: http://yatani.jp/HCIstats/MannWhitney. Accessed January 28, 2014. [Google Scholar]
  9. Yatani K. Statistics for HCI Research: Wilcoxon Signed. Available at: http://yatani.jp/HCIstats/WilcoxonSigned. Accessed January 28, 2014. [Google Scholar]
  10. Jones TJ, Deal DD, Vernon JC, Blackburn N, Stump DA. Does vacuum-assisted venous drainage increase gaseous microemboli during cardiopulmonary bypass? Ann Thorac Surg. 2002;74:2132–2137. [CrossRef] [Google Scholar]
  11. Nielsen PF, Funder JA, Jensen MØ, Nygaard H. Influence of venous reservoir level on microbubbles in cardiopulmonary bypass. Perfusion. 2008;23:347–353. [CrossRef] [PubMed] [Google Scholar]
  12. Herbst DP, Najm HK. Development of a new arterial-line filter design using computational fluid dynamics analysis. J Extra Corpor Technol. 2012;44:139–144. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Herbst DP. The effects of pressure on gases in solution: Possible insights to improve microbubble filtration for extracorporeal circulation. J Extra Corpor Technol. 2013;45:94–106. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. Liu S, Newland RF, Tully PJ, Tuble SC, Baker RA. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters. J Extra Corpor Technol. 2011;43:107–114. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  15. Lin J, Dogal NM, Marthis RK, Qui F, Kunselman A, Ündar A. Evaluation of Quadrox-I and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated bypass. Perfusion. 2012;27:235–243. [CrossRef] [PubMed] [Google Scholar]
  16. De Somer F, Dierickx P. Can an oxygenator design potentially contribute to air embolism in cardiopulmonary bypass? A novel method for the determination of the air removal capabilities of neonatal membrane oxygenators. Perfusion. 1998;13:157–163. [CrossRef] [PubMed] [Google Scholar]
  17. Schönburg M, Urbanek P, Erhardt G, et al. Significant reduction of air microbubbles with the dynamic bubble trap during cardiopulmonary bypass. Perfusion. 2001;16:19–25. [CrossRef] [Google Scholar]
  18. Riley JB. Arterial line filters ranked for gaseous micro-emboli separation performance: An in vitro study. J Extra Corpor Technol. 2008;40:21–26. [Google Scholar]
  19. De Somer FM, Vetrano MR, Van Beeck JP, Van Nooten GJ. Extracorporeal bubbles: A word of caution. Interact Cardiovasc Thorac Surg. 2010;10:995–1001. [CrossRef] [PubMed] [Google Scholar]
  20. Kim WG, Kim KB, Yoon CJ. Scanning electron microscopic analysis of arterial line filters used in cardiopulmonary bypass. Artif Organs. 2000;11:874–878. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.